

Applying Central Valley Joint Venture Population Objectives for Grasslands and At-Risk Riparian Birds – Final Report 2024

Prepared for Central Valley Joint Venture

by River Partners

June 2024

Table of Contents

Exe	ecutive Summary	2
INTR	ODUCTION	2
PROJ	ECT ACCOMPLISHMENTS	3
A. B. C.	Project Progress Project Design Monitoring	3 3 6
RESU	ILTS AND RECOMMENDATIONS	6
A. B. C.	Focal Species Density Objectives Vegetation Management Recommendations	6 9 10
LESS	ONS LEARNED	11
SHAR	RING OUTCOMES	12
REFE	CRENCES	13
APPE	NDIX A	14
APPE	NDIX B	16

List of Figures

Figure 1. Location of the 11 restoration sites included in this study, shown within the Central Valley Joint Ven	ture's
Sacramento Planning Region (map by Point Blue Conservation Science).	5
Figure 2. Percent cover of woody vegetation in the riparian habitats of each site. The number within the bars re	efers
to the restoration age of the site in years.	10

List of Tables

Table 1. Project Timeline	3
Table 2. List of selected restored sites	4
Table 3. Central Valley Joint Venture focal species for riparian, grassland, and oak savannah habitats, shown with	
their more specific habitat preferences. Species identified as at-risk are italicized (CVJV 2020).	8
Table 4. Focal species that met their population density objective at each site.	8

Executive Summary

With funding from the Central Valley Joint Venture, River Partners planned and implemented the Applying Central Valley Joint Venture Population Objectives for Grassland At-Risk Riparian Birds (Project hereafter). The Project was funded to apply population objectives for grassland and at-risk riparian birds to further inform restoration design to support conservation. The purpose of this Progress Report is to summarize the Projects accomplishments and result. Avian and vegetation surveys were conducted at 11 restored sites aged 5 to 21 years old.

Planning activities including monitoring design and site selection occurred in winter and spring 2023. Monitoring activities took place in May-June 2023 and consisted of avian point count surveys and vegetation relevés. Avian point count survey data were analyzed by Point Blue Conservation Science, with a report delivered to River Partners. In Spring 2024, River Partners analyzed vegetation data in relation to avian outcomes and prepared management recommendations. In May 2024, River Partners shared results in two presentations at the annual SERCAL conference in Redlands, CA. June 2024 marks the end of the Project.

Introduction

Given the dramatic loss of habitat in the Central Valley, many of the diverse avian species found here are now reduced to small populations or have been extirpated from the region. Ambitious conservation goals have been set by the Central Valley Joint Venture (CVJV) for birds of the Central Valley, including habitat protection and restoration, population targets, and breeding densities. The Project follows the CVJV 2020 Implementation Plan objective to apply the breeding density objectives for these birds to demonstrate that restoration activities are creating quality habitat.

The purpose of this Project is to evaluate restoration success on population measures of grassland and at-risk riparian bird focal species and as well as the restoration value of each site for the focal bird species. We selected 11 restoration sites of known age and performed point count surveys and vegetation surveys. In partnership with Point Blue Conservation Science, we compared population estimates to actual densities as calculated by point counts.

We present recommendations for habitat restoration that will maximize bird species densities at restored sites. Improving habitat for bird species has long been an intended co-benefit of River Partners' work since 1998. Project outcomes will be incorporated into active planning of restoration projects in the Sacramento and San Joaquin Valleys by River Partners.

Understanding the progress made towards the population objectives set by the CVJV 2020 Implementation Plan will facilitate science-based evaluation of restoration design and methods that can further improve projects, secure additional funding, and bring the CVJV closer to the ambitious conservation goals.

Project Accomplishments

A. Project Progress

Project design, data collection, and the analysis of the point county survey data has been completed (Table 1). Tasks that remain include analysis of vegetation data and a final report that details recommendations.

Table 1. Project Timelin	ne
--------------------------	----

Invoice #	Invoice Period	Task Description
1	7/1/22 to 3/31/23	General management, subcontract execution, monitoring design (site selection), access permits
2	4/1/23 to 5/31/23	General management, monitoring design (point count location selection), access permits, first round of point counts, vegetation surveys, data entry
3	6/1/23 to 6/30/23	General management, second round of point counts, data entry
4	7/1/23 to 7/31/23	General management, data entry
5	8/1/23 to 9/30/23	General management, data analysis by Point Blue (subcontractor)
6	10/1/23 to 10/31/23	General management, data analysis and report writing by Point Blue (subcontractor)
7	11/1/23 to 12/31/23	General management, report preparation
8	1/1/23-6/30/23	General management, data analysis, report presentation, conference presentation, social media sharing

B. Project Design

River Partners worked with Point Blue Conservation Science to identify 11 restoration sites in the Sacramento Valley that had both riparian and grassland vegetation (Table 2, Figure 1). These sites were located along the Sacramento and Feather Rivers and varied in age since restoration of 5-21 years. Grassland and riparian habitat were identified via satellite imagery, knowledge of past restoration design, and a recent land cover data set compiled for the Great Valley Ecoregion which used NAIP imagery in 2009, 2012, and 2014 (CDFW 2018).

Depending on acreage, three to four survey points were identified for each the riparian and grassland vegetation habitats of each site; some points are legacy points and have had point counts taken in previous years by Point Blue Conservations Science (coordinates: Appendix A, maps: Appendix B). Hamilton City did not have enough grassland acreage to fit points greater than 250m apart, and so only riparian habitat was assessed.

Table 2. List of selected restored sites

Site	River	Landowner/Manager
Hamilton City	Sacramento	RD 2140
Pine Creek West	Sacramento	CDFW
Capay	Sacramento	Sacramento River NWR
Llano Seco	Sacramento	Sacramento River NWR
Del Rio	Sacramento	River Partners
Sul Norte	Sacramento	Sacramento River NWR
Drumheller	Sacramento	Sacramento River NWR
Colusa SRA	Sacramento	CA State Parks/City of Colusa
Abbott Lake	Feather	CDFW
O'Connor Lakes	Feather	CDFW
Bear River Setback	Feather	TRLIA/Sac Valley Conservancy/Sutter Buttes Land Trust

🧭 RIVER PARTNERS

Figure 1. Location of the 11 restoration sites included in this study, shown within the Central Valley Joint Venture's Sacramento Planning Region (map by Point Blue Conservation Science).

C. Monitoring

1) Point Counts

Point count surveys measure relative abundance by counting all birds seen or heard at specific survey points. Survey points were established with a minimum distance of 250m between points in both grassland and riparian habitats. Surveys were performed twice during breeding season, in May and June, with a minimum of two weeks apart to give birds time to rest and resettle between visits. Survey methods followed the protocol described by Point Blue Conservation Science (Ballard et al, 2003).

Point Blue Conservation Science was subcontracted to estimate breeding densities of focal bird species and compare them to the population objectives as defined by the Central Valley Joint Venture that are expected to reflect habitat quality. More detailed methodology can be found in their report (Appendix B).

2) Relevé Monitoring

Relevé monitoring collects data on vegetation composition, cover, and structure by sampling 100 m² or 400m² plots following standardized relevé /rapid assessment protocols (California Native Plant Society Relevé Protocol, CNPS Vegetation Committee). Relevé plots were located at each point count location. Relevé plots were 100m² in grassland habitat and 400m² in riparian habitat. Using this standardized technique allows River Partners to compare restoration stands to vegetation across the state and is highly repeatable. River Partners' scientists conducted relevés in May and June 2023.

3) Photos

Photos were taken at each of the survey locations. Four photos were taken, facing each cardinal direction. Photos provide qualitative information of the vegetation at a site. As the locations of these photos are recorded, they can serve as photo points if the site is ever visited in the future to qualitatively monitor vegetation change over time.

Results and Recommendations

Restoration sites aren't expected to support the density objectives of all species simultaneously, due to their differing ages, vegetation structure, and goals that influenced the design. This was represented in the results, as no site met the density objectives of more than three focal species in each habitat. However, all species but three species met their density objectives on at least one site, and while some sites had fewer total species than others, they supported the density objective of a species not met at other sites. Thus, when considering the sites on a landscape scale, riparian forest and grassland savannah restoration has resulted in the creation of suitable habitat for riparian and grassland focal bird species.

A. Focal Species Density Objectives

This section is a summary of the more detailed results discussion by Point Blue Conservation Science found in Appendix B. The focal species for riparian, grassland and oak savannah habitats can be found in Table 3. Nine of the 12 riparian focal species were detected during

🦻 RIVER PARTNERS

surveys, missing Bank Swallow, Yellow-billed Cuckoo, and Least Bell's Vireo. Of the grassland-oak focal species, only Western Meadowlark was detected of those that prefer grassland habitat, but species that prefer oak savannah were detected. The only at-risk species among both groups of focal species that were detected were Yellow Warbler and Yellow-breasted Chat.

There was considerable variation among species, sites, and habitat types in terms of meeting short-term density objectives. For riparian habitat, ten of the 11 sites had at least one riparian focal species meet or exceed the short-term density objective (Table 4). For grassland habitat, seven of the ten sites had at least one grassland-oak savannah focal species meet or exceed density objectives. All sites had several species not meet the objectives.

Ash-throated Flycatcher, Nuttall's Woodpecker, and Black-headed Grosbeak were the three riparian focal species that had density objectives met at the most sites (n = 4-6), as well as had among the highest densities of all focal species. These three species are all associated with mature riparian forest and woodland, indicating the success of the riparian restoration sites in creating suitable habitat. Fewer sites supported focal species associated with dense understory or shrubby thickets. Fewer grassland focal species met density objectives; the species whose density was met at the most sites was Western Kingbird. Only two grassland sites supported the density objective of the Western Meadowlark, the only focal species detected that prefers grassland habitat. Several species did not reach density objectives at any site.

Although there were not many restoration sites in this study that were young (<5 years) or middle-aged (5-15 years), the densities of some riparian focal species appeared to vary with time since restoration. Of the species that prefer mature forest, only Ash-throated Flycatcher – a cavity nester – appeared to increase in density with time since restoration. For the Nuttall's Woodpecker, the only other cavity nester, the sites with highest counts spanned the range of restoration ages while the highest densities for Black-headed Grosbeak were found in 15- to 20-year-old restoration sites, with lower densities at younger and older sites.

Spotted Towhee was one of the most abundant species across sites, and its densities also peaked in 15- to 20-year-old restoration sites. Other riparian focal species were only detected at very low densities and were not detected at all sites, including the Common Yellowthroat, Lazuli Bunting, Yellow Warbler and Yellow-breasted Chat; however, the former three of these species all had their highest density at the youngest restoration site. Many of these patterns are not unexpected: Lazuli Bunting and Yellow Warblers are associated with dense, shrubby riparian thickets that are more common in the early stages of riparian vegetation development, while the Ash-throated Flycatcher is a secondary cavity nester that relies on natural cavities or those made by other species, a habitat feature more likely to occur in mature riparian forest with older trees.

For the grassland focal species, most were only detected at a few sites, and there were no clear patterns of an association with time since restoration. However, Western Meadowlark, the only one that prefers grassland habitat over grassland-oak savannah, did have the highest densities at the oldest grassland restoration sites.

Table 3. Central Valley Joint Venture focal species for riparian, grassland, and oak savannah habitats,shown with their more specific habitat preferences. Species identified as at-risk are italicized(CVJV 2020).

Riparian Focal Species	Code	Grassland-Oak Savannah Focal Species	Code
Mature forest preferred		Grassland preferred	•
Ash-throated Flycatcher	ATFL	Burrowing Owl ¹	BUOW
Black-headed Grosbeak	BHGR	Grasshopper Sparrow	GRSP
Nuttall's Woodpecker	NUWO	Horned Lark	HOLA
Western Yellow-billed Cuckoo	YBCU	Northern Harrier ¹	NOHA
Dense understory preferred		Western Meadowlark	WEME
Common Yellowthroat	COYE	Oak savannah preferred	•
Song Sparrow	SOSP	Acorn Woodpecker	ACWO
Spotted Towhee	SPTO	American Kestrel	AMKE
Dense, shrubby thickets preferred		Lark Sparrow	LASP
Lazuli Bunting	LAZB	Loggerhead Shrike	LOSH
Least Bell's Vireo	LBVI	Western Bluebird	WEBL
Yellow Warbler	YEWA	Western Kingbird	WEKI
Yellow-breasted Chat	YBCH	Yellow-billed Magpie	YBMA
Other	•	—	
Bank Swallow ¹	BANS		

¹Species with large territories and/or colonial nesters that are not adequately surveyed by point count surveys are not included in the analysis.

			F	Ripari	an For	est					Gras	sland	l Savann	ia
	Ash-throaters	Black-header C	Common Yellowthroat Lazuli Bunting	Nuttall's Wood	Song Sparrow	Spotted Towher	Yellow-breast	Yellow Mc.	Acorn Woodpecker	American Kestrel Larv c	Western C.	Western Kill	Western Meadowlark	Vin
Abbott Lake	х			х							х	х		
Bear River Setback		Х		Х	2	х			Х			Х		
Сарау														
Colusa		Х		х										
Del Rio	х												x	
Drumheller Slough		Х					х	Х				Х		
Hamilton City			х					Х						
Llano Seco	х		х										х	
O'Connor Lakes		х												
Pine Creek West	х				Х						х	х		
SulNorte	х			х								х		

Table 4. Focal species that met their population density objective at each site.

B. Vegetation

River Partners collected data on vegetation composition and structure, assessing the metrics of percent cover, species richness, and strata height. Each metric was assessed as a whole as well as separated into different classes of strata [tree, shrub, woody (tree + shrub), herbaceous] and plant origin (native, non-native). Unfortunately, graphical representation of the data showed no correlation of any vegetation metric with avian species richness nor avian community composition in either habitat, and so no statistics were performed. Further analysis connecting vegetation data with the avian density estimates is outside the scope of this study.

Additionally, there was no correlation of the vegetation metrics with age since restoration (Figure 2). However, the percent cover of woody vegetation in the riparian forest followed expectations upon reflection of each sites' initial conditions, planting design, and goals. For example, Hamilton City, the youngest restored site at 5 years, had the lowest cover. While expected to be lowest as it was youngest, it was also planted at a much lower density than other projects to maintain flood conveyance. Similarly, while the oldest site at 21 years old, Llano Seco was also planted at low density for flood conveyance needs, and so only averaged at 25% cover, aligning with the initial planting design. Pine Creek West, Del Rio, and O'Connor Lake, all 18-19 years since restoration, had less than 30% cover on average, half the cover of younger sites Bear River, Drumheller Slough, Capay, and Abbott Lake. This difference in cover can be explained by soil conditions, as Pine Creek West, Del Rio, and O'Connor Lakes had poor soil and so dense growth was never expected. Colusa SRA had good soils, but still only 30% cover, which can be explained by the fire that went through the site in 2022. Bear River, Drumheller Slough, and Capay, the sites with highest cover (50-65%), were also planted at the highest density.

While more detailed analysis relating the density objectives to the vegetation is outside the scope of this work, it should be noted that the two sites with the most riparian focal species meeting density objectives also had the highest woody vegetation cover (Bear River Setback and Drumheller Slough), and interestingly only one of those riparian focal species was present at both sites (Black-headed Grosbeak). Additionally, Common Yellowthroat only met density objectives at Hamilton City and Llano Seco. These two sites, while they are the oldest and youngest sites, were both planted at low density and have low woody cover.

The grassland savannas had low native herbaceous cover across all of the sites, even sites that have been known to be grazed. While anecdotally, some sites had large patches of native grasses that weren't captured in the three-four data points, this result was not unexpected. The location of grassland restoration in riparian areas are often more dictated by flood conveyance needs rather than site conditions. Thus, we may plant a grassland where the site conditions are not always most suitable for grassland success, which increases the difficulty of the already difficult practice of managing native grasslands.

RIVER PARTNERS

Figure 2. Percent cover of woody vegetation in the riparian habitats of each site. The number within the bars refers to the restoration age of the site in years.

C. Management Recommendations

By evaluating the success of restoration activities in meeting the CVJV's density objectives for breeding birds through post-restoration bird monitoring, we aim to help to inform future restoration design and support effective bird conservation. We have shown that riparian forest and grassland savannah restoration creates important habitats for birds, which can be seen by most focal bird species having their density objectives met on at least one site, when considering the sites on a landscape scale.

One of the most notable results of the Project is that some of the riparian focal species that were not present at most sites were species typical of early successional stages in riparian vegetation. This may be driven by the lack of young restoration sites in the study, however, it highlights the needs to increase the amount of early -successional habitat across the landscape. The land used to have a mosaic of different successional stages of riparian forest, and we need that range of habitat ages to maximize avian outcomes. This can be done in two ways. One, we should return to dense, older restoration sites to manage for the more open early successional habitat by clearing certain areas and replanting. The other, more important way is ensuring continual largescale restoration projects across the landscape, so that at any given time there is large acreage plantings of early successional stage vegetation along the river.

Our results also highlight the difficulty in native grassland management. Native grasslands should undergo grazing and prescribed burns regularly to maintain native herbaceous dominance. These management practices would also prevent woody encroachment into the grasslands, which would ideally promote the focal species that prefer grassland habitat over grassland-oak

🦻 RIVER PARTNERS

savannah, which we did not see much of in this Project. While not showing up in the small sample size (n = 3-4), several sites had large patches of native grasses. Next steps would include obtaining more information on how management actions impact native cover, as well as obtain more data points to get a more representative sample of native cover.

The need for multi-benefit restoration is being increasingly recognized. For example, restoration projects may aim to increase wildfire resiliency, groundwater recharge, and carbon sequestration in addition to creating wildlife habitat, of which different focal species may also require different vegetation structures. Assessing performance of a restoration site with multi-benefits in mind is complex when maximizing one benefit may reduce another. The lack of trends with age since restoration among bird species in this study highlights this, as the sites themselves varied greatly in planting density and soil quality, with some needing to place the goal of maintaining flood conveyance higher in priority than in maximizing bird habitat.

More study across more restoration sites that vary in age, size, density, and species composition is needed to better understand how restoration serves as habitat to riparian and grassland focal bird species.

Lessons Learned

Overall, the Project was successful in showing that, on a landscape scale, riparian and grassland restoration project sites have provided habitat to CVJV focal grassland birds and at-risk riparian birds. The Project also provided valuable lessons on how to further improve data collection and analysis in future River Partners' projects.

•Increased survey effort. In this study, we surveyed 3-4 points in each the grassland savannas and riparian forests at each site. We were able to determine whether species met objectives with high confidence for most species at most sites, but there were approximately 21% of species/site combinations that were uncertain due to insufficient precision in our density estimates. Increasing the number of points per site where feasible and/or repeating surveys in subsequent years may help to reduce this uncertainty for some species and sites. Future projects will increase the number of points per site. We also recommend increased vegetation survey efforts in addition to the vegetation surveys taking place at the point count location. Our vegetation data had greater uncertainty than the point county survey data, and increased sampling effort would help us better assess bird outcomes in relation to vegetation data.

•Additional bird surveys methods. Several of the CVJV focal species are not easily surveyed using the point count method, due to their large home ranges or colonial nesting behavior. More specialized survey methods designed to target these species would be helpful in estimating their breeding densities and whether their density objectives have been met. These species include the Western Yellow-billed Cuckoos and Burrowing Owls. Detections of rare or less frequently vocal species may also be improved through acoustic monitoring methods. Future projects will deploy Acoustic Recording Units (ARUs) at the same location as the point counts. ARUs record bird calls continuously during the sunrise hours every day throughout the breeding season, are better able to capture the presence of rare birds, although they cannot provide abundance information. However, methods for estimating densities from these data would require additional development and testing.

•Additional sites (including more younger restoration sites). We found that some of the riparian focal species that were not present at most sites were species that are typical of early successional stages in riparian vegetation growth, which may have been driven in part by the small number of young restoration sites in this study. Future studies could include a more even distribution of sites in terms of years since restoration, to better understand how early successional species are responding to restoration activities. In addition, repeated surveys at the same sites over time, starting just after restoration, would provide a more comprehensive view of their contributions to the CVJV's conservation objectives and how they change over time.

Sharing Outcomes

River Partners has and will continue to share the results from this work with practitioners in public and private institutions. River Partners Restoration Ecologists presented two presentations at the 2024 SERCAL (California Society for Ecological Restoration) in May, titled 1) Informing restoration design: Applying Central Valley Joint Venture Population Objectives for Grassland and At-Risk Riparian Birds, and 2) Assessing riparian restoration project performance: Multiple benefit perspectives. The annual SERCAL conference is one of the largest gatherings of restoration professionals in the state, allowing us to reach a wide audience. As funding allows, we aim to present this work at other conferences. We will also share the report by Point Blue as well as the recommendations discussed in this report with the land agencies where the data was collected. The report by Point Blue was written in draft manuscript form and will continue to be edited with the intention to submit to a journal.

River Partners also drafted a social media post about the results of this work, which will be shared in the coming months to an audience of over 3,800 followers.

Importantly, the outcomes of the Project were shared internally and used to develop and improve our monitoring practices. The lessons we learned from the Project have already been implemented in two other monitoring projects this year, one in Sacramento River Wildlife Area units, and the other in the San Joaquin Valley, which combined are our largest monitoring effort yet and providing further information of both remnant and known-age restoration forests.

References

Ballard, G., T. Gardali, and D. Humple. 2003. *PRBO Point Count Methodology*. Point Reyes Bird Observatory, Conservation Science.

[CDFW] California Department of Fish and Wildlife. 2018. Vegetation—Great Valley Ecoregion [ds2632] [GIS dataset]. Available from: https://map.dfg.ca.gov/metadata/ds2632.html

[CVJV] Central Valley Joint Venture. 2020. Central Valley Joint Venture. 2020. Implementation Plan. Sacramento, CA: U.S. Fish and Wildlife Service. Available from: www.centralvalleyjointventure.org

Appendix A

Point	Habitat	New/	Longitude (WCS84)	Latitude (WCS84)
I Ullit Hamilton City	турс	Legacy	(110304)	(110304)
HAMC 201	rinorion	2011	121 0700607	20 71420244
HAMC_201	riparian	new	-121.9709097	39.71439244
HAMC_202	riparian	new	-121.9600913	20 71662924
ПАМС_205	riparian	new	-121.9702413	39./1002824
Ding Creek West	пранап	new	-121.9092938	39./10/39/2
PINE 1	grassland	lagaay	121.065	20 72282
PINE_1 DINE_121	grassland	regacy	-121.903	39.72363
PINE_121 DINE_122	grassiand	new	-121.9380/23	20 72274201
PINE_122	grassiand	new	-121.9000803	39.73274391
PINE_125	grassiand	new	-121.9623986	39.72004129
PINE_II	riparian	legacy	-121.9022	39.72242
PINE_214	riparian	new	-121.938/301	39.72277955
PINE_8	riparian	legacy	-121.96239	39.72820
PINE_9	riparian	legacy	-121.961	39.7258
Capay KAIS 101	1 1		121 0401 (12	20 70(25794
KAIS_101	grassland	new	-121.9491612	39.70625784
KAIS_102	grassland	new	-121.9565131	39.70614103
KAIS_103	grassland	new	-121.95/1321	39./096403/
KAIS_104	grassland	new	-121.959/39	39.70889699
KAIS_13	riparian	legacy	-121.95046	39./1205
KAIS_5	riparian	legacy	-121.9481	39.7025
KAIS_7	riparian	legacy	-121.95246	39.7021
KAIS_9	riparian	legacy	-121.95276	39.7049
Llano Seco			101 05157	20 50014
LLSE_29	grassland	legacy	-121.95176	39.58914
LLSE_31	grassland	legacy	-121.95068	39.58684
LLSE_32	grassland	legacy	-121.95261	39.58436
LLSE_34	grassland	legacy	-121.94707	39.58771
LLSE_201	riparian	new	-121.9479718	39.5908035
LLSE_25	riparian	legacy	-121.95016	39.59072
LLSE_28	riparian	legacy	-121.94637	39.58972
Del Rio				
DELR_101	grassland	new	-121.9637837	39.52657634
DELR_103	grassland	new	-121.9635031	39.52887146
DELR_104	grassland	new	-121.9635522	39.53070318
DELR_1	riparian	legacy	-121.96642	39.5232
DELR_3	riparian	legacy	-121.9665	39.52679
DELR_4	riparian	legacy	-121.96654	39.52862
DELR_9	riparian	legacy	-121.96405	39.52362
Sul Norte				
SUNO_101	grassland	new	-122.0002322	39.47489533
SUNO_102	grassland	new	-122.002297	39.47198835

Table A1. Survey point coordinates for each site.

RIVER PARTNERS

SUNO 103	grassland	new	-122.0015043	39.46912806
SUNO 104	grassland	new	-122.0041002	39.45950815
SUNO 1	riparian	legacy	-121.99799	39.46455
SUNO 4	riparian	legacy	-121.99784	39.46248
SUNO 5	riparian	legacy	-122.00066	39 46662
SUNO 9	riparian	legacy	-121 99807	39 46843
Drumheller	npanan	leguej	121.99007	57.10015
PRFF 101	orassland	new	-122 000364	39 41716247
PRFE 102	grassland	new	-122.000301	39.41523372
PRFE 103	grassland	new	-121 9964996	39 41297005
$\frac{1111}{100}$	grassland	legacy	-122.0028335	39 41512251
$110 \text{ $	rinarian	legacy	-122.0020555	39.41665965
PRFF 11	riparian	legacy	-122.0053047	39 41691024
DREE 8	riparian	legacy	-122.003201	39.41091024
DDEE 0	riparian	logacy	-122.0014870	20 /1/75017
Caluar SDA	пранан	legacy	-122.0030499	39.414/301/
COLU 101	arragiond	2011	122 0052201	20 22260201
COLU_101	grassiand	new	-122.0032291	39.23309291
COLU_102	grassland	new	-122.00/030/	39.23020392
COLU_103	grassland	new	-122.0054864	39.2315/049
COLU_201	riparian	new	-122.0108225	39.22880098
COLU_202	riparian	new	-122.0134109	39.2304/36/
COLU_203	riparian	new	-122.0120465	39.22/0//5
	riparian	new	-122.0096914	39.23395358
Abbott Lake			101 (100744	20.04105545
ABBL_101	grassland	new	-121.6103/44	39.04197747
ABBL_102	grassland	new	-121.6013651	39.02366401
ABBL_103	grassland	new	-121.6116401	39.03035524
ABBL_104	grassland	new	-121.6024144	39.02566601
ABBL_201	riparian	new	-121.5982449	39.02465588
ABBL_202	riparian	new	-121.6076089	39.02903042
ABBL_203	rıparıan	new	-121.6091395	39.03120911
O'Connor Lakes				
OCLA_101	grassland	new	-121.5818848	39.00755942
OCLA_102	grassland	new	-121.5934007	39.00703023
OCLA_103	grassland	new	-121.5886306	39.00747162
OCLA_104	grassland	new	-121.5911195	39.00554378
OCLA_201	riparian	new	-121.5957544	39.00649741
OCLA_202	riparian	new	-121.5943198	39.00228897
OCLA_203	riparian	new	-121.5907378	39.00233581
OCLA_204	riparian	new	-121.5945473	39.00410672
Bear River Setback				
BEAR_101	grassland	new	-121.5499482	38.96340506
BEAR_102	grassland	new	-121.5498691	38.95963773
BEAR_103	grassland	new	-121.5485124	38.96153917
BEAR_104	grassland	new	-121.5463562	38.96973133
BEAR_201	riparian	new	-121.567875	38.94827647
BEAR_202	riparian	new	-121.5706468	38.95187739
BEAR_203	riparian	new	-121.5505518	38.95759006
BEAR_204	riparian	new	-121.5666435	38.95374732

Appendix B.

Report/draft manuscript by Point Blue Conservation:

Applying Central Valley Joint Venture Population Objectives for Grasslands and At-Risk Riparian Birds – Final Report 2024